
IEEE TRANSACTIONS Oti MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-33, NO. 10, OCTOBER 1985 1089
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Abstract —A variational method recently used to analyze magnetostatic

surface waves in films with arbitrary magnetization iohomogeneities tfsrough

the film thickness is extended and applied to volume-wave modes in similar

structures. Methods for calculating dispersion relations, delay characteris-

tics, and magnetostatic potentiaf functions for both forward and backward

volume waves are discussed. Also, concepts pertaining to homogeneous

films such as mode bandwidth and dimensional sealhg effects are extended

to the inhomogeneous case. Detaifed consideration is given to a class of

modes whose zero-wavenumher cutoff frequencies are associated with the

minimnm magnetization of the film. Calculations for Iiuear aud ion-

implanted films are presented as numerical examples. Forward volume

waves show greater sensitivity to the inhomogeneities than do backward

voloshe waves for the cases considered.

1. INTRODUCTION

I N A PREVIOUS paper [1], we used a variational ap-

proach to solve the problem of magnetostatic surface-

wave (MSSW) propagation in ferrite thin films with non-

uniform magnetization through the film thickness. The

geometry considered consisted of an infinite slab placed

between parallel ground planes. In the present paper, we

discuss the propagation of volume magnetostatic waves in

these inhomogeneous films.

In contrast to surface waves, the properties of both

backward volume-wave (BVW) as ‘well as forward volume-

wave (FVW) modes are independent of the direction of

propagation in this geometry despite the magnetization

inhomogeneities [2].

As in the surface-wave case, the problem will be solved

by employing a variational principle approach to the

boundary value problem. The potential in the ferro-

magnetic region is expanded in a complete set of functions,

and the expansion coefficients are found by Ritz’ method.

Linear magnetization profiles are used for illustration of

the method and the effect of the slope of their magnetizat-

ion is presented. Magnetization profiles resulting from

low-level ion implantation of ferromagnetic films are also

presented, and the effect of the implantation level on the

magnetostatic-wave (MSW) delay is discussed.
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Fig. 1. Ferrite film geometry and coordinate system used.

II. FILM GEOMETRY AND BASIC EQUATIONS

Let us assume an infinite ferrite slab of thickness 2S

placed between two infinite parallel perfect conductors as

shown in Fig. 1. Consider a coordinate system with its

origin at the middle of the slab with the z-axis parallel to

the slab and the conductors.

Magnetostatic volume waves propagate in film structures

under two different orientations of the bias field. BVW’S

propagate along the z-direction when the ferrimagnet is

saturated with a bias field ~= H0.2, while FVW’S propa-

gate along the z-direction when the bias field is normal to

the plane of the film, i.e., ~ = H02.

With a small-signal time dependence of the form e- ‘“’,

the permeability tensor of the ferromagnetic material takes

the form

[1P
–i~ O

F=#lo iK p o

001

for BVW (bias E= HOE), and the form

(1)

(2)
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for FVW (bias ~= H02), where

Y2P%Hi(Hl+MS)–02p= (3)
y2p;H,2 – U2

– YPof%’-’~=
y2p:HC2 – (.02

(4)

y is the gyromagnetic ratio (negative), p o is the permeabil-

ityy of free space, M,(x) is the saturation magnetization of

the film as a function of position, and Hz is the internal

magnetic field in the ferromagnetic film.

Consistent with the magnetostatic approximation, we

assume that there exists a potential function IJ such that

Z=–vtj (5)

and

&=p. x. (6)

The equation that determines the potential ~ is Maxwell’s

equation requiring the divergence of the ~ field to vanish

v.(~.v+)=o. (7)

The boundary conditions to be satisfied are

5.2 continuous (8)

and .

* continuous. (9)

Equation (7) reduces to Laplace’s equation in the dielectric

regions where M, vanishes. The general solutions of (7)

that represent waves traveling along the z-direction are of

the form

*l=(A~e-PX+~,e~x)e’8Z (lOa)

*II=@ (x)eipz (lOb)

*III = ( Dle
-& + ~2eh) ~l~z. (1OC)

Substitution of (10) into (5) gives the following expression

for the small-signal field ~:

iI = [~(Ale-Px– A2ePx)-2

– i~(Ale ‘@+ ~2e6X)2]e@z (ha)

ZII=–[@’(k)2 +i/3@(x)2]e’6z (llb)

iIII = [~(Dle-flx– D2eBx)2

- i/3 ( Dle ‘~x + Dz.g~x)2] ei~z. (llc)

111. VARIATIONAL FORMULATION FOR BVW

Since the bias field is in-plane for BVW’S, the internal

field H, is equal to the applied field HO. Using the expres-

sion (1) for the permeability tensor, (6) yields for the ~

field.

zl=poil (12a)

~11 = –po[p@’t + iK@’j+ i~@,?]e’pz (12b)

3111= po&l. (12C)

Requiring the divergence of (12b) to vanish (cf. eq. (7))

gives the equation

p~’’+p’a’–pza=o (13)

for the potential profile ~(x) inside the ferrimagnet.

Application of the boundary condition (8) on the con-

ductors and on the ferrimagnet–dielectric interfaces gives

Ale-~d– Aze~d= O (14)

Dle&- Dze-Br= O (15)

–p@’1, =/3( A1e-@– A2ep’) (16)

–p@’l_, =~(DieBs– D2e-Bs) (17)

while the application of condition (9) at the interfaces gives

A1e-@+ A2eB’= 0(s) ‘(18)

D1eps+D2e-ps =@(–.s). (19)

Equation (13) cannot be solved analytically in closed

form for the general case where p is a function of x. For a

numerical solution, we will formulate the boundary value

problem as an equivalent variational one, noting that (13)

can be obtained as the Euler–Lagrange derivative of the

Lagrangian

L=p(@’)2+&@2. (20)

We therefore consider the functional

~=PoJs [P(w)’+mqdx
—s

+floFl(@)], +Po~2(@) l-s (21)

where Fl(@ ) and F2( 0) are functions to be chosen so as to

satisfy the boundary conditions at x = +s. The variational

problem

Sw=o (22)

gives

–2JS (pw’+p’w-po)tmdx
—s

aF 13FZ
+2p@’a@ :,+ +80 + &N = O. (23)

s —.$

The integral in (23) vanishes for all the solutions of (13).

The functions F1 and F2 have now to be determined so

that the remaining part of (23) vanishes due to the boundary

conditions (14)–(19). That is, F1 and Fz must satisfy

(
i?F1

2/l@’+ ~
)1

=0
s

and

( aF
–2/l@’+ $

)1
= o.

—s

(24)

(25)

In Appendix A, we show that

Fl(@)l, =/3tanh(~t1)@2(s) (26)

F2(@)l_~=B tanh(fltz)@2(-~) (27)

where fl = d –s and t2= t–s. The functional w of the
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variational problem can thus be written

+~0/3[tanh(~tl) @2(s) +tanh(@2)@2(-s )]. (28)

We recognize (24) and (25) as the natural bounda~

conditions of the variational problem which, according to

(16) and (17), simply require the, continuity of $. i at the

film–dielectric interfaces. (In making this identification,

(18) and (19) for the continuity of the potential and (14)

and (15) manifesting the existence of the ground planes at
x = – t and x = d have also been used.) Further, the

Lagrang~m_(20) is identical with the magnetic quasi-energy

density b. h“, as can be seen by direct use of (llb) and

(12b). In the same spirit, using” the appropriate parts of

(11) and (12) to form the product :3. ~ * in the dielectric

regions I and III, integrating with respect to x and using

the boundary conditions (14)–(19), the expressions

J‘S&~* dx=~tanh(/3t2)@ 2(-s) (30)
–t

can be obtained. The functional (28) can thus be written

w.
J

‘~.~*dx. (31)
–t

The physical interpretation of (31) is given in [1].

We now consider the expansion of the potential profile

O(x) in a set of function! { ~O(x), jl(x), -.. } complete in

the interval [ –s,s]

Q(X)= CJ(X) (32)

where the summation is assumed over the repeated indices.

Substitution of (32) into (28) yields the quadratic form

w = a,JC,Cj (33)

with

To recapitulate, w is stationary for the correct fields; this

means, according to (33), that w is stationary for the

correct coefficients Ci. (It is well known [3] that, as a

quadratic form, w is stationary when the Ci’s are the

components of the eigenvectors of aij and @e values of w

for these Ci’s are proportional to the eigenvalues of aij.)

It can be shown that w vanishes for all correct fields of

the magnetostatic problem [1], [2]. Thus, it is only the zero

eigenvalue of a,, that will give us the desired solutions. The
condition on a,, so that zero is indeed an eigenvalue is

det(aij) = O. (35)

Solution of (35) for ~ gives the wavenumbers of the modes

allowed for each frequency. This process is repeated for

different frequencies in order to obtain the dispersion

relation ~ = P( o ). The delay ~ = T(u) can be calculated by

taking a numerical derivative of the dispersion relation.

IV. FVW VARIATIONAL FORMULATION

FVW modes are supported by a bias field H = Hoi, in

which case the internal field H, is given by

Hi= Ho– M~(x). (36)

According to (6) and (11) and using the expression (2) for

the permeability tensor, the small-signal ~ field is

G1=pozl (37a)

~11= –pO[@(x)j+ K~@j+ 2~fl@Z]eiPz (37b)

~111= ~ozlll. (37C)

Substituting (37b) into (7), we obtain the equation

W-pp%=o (38)

for the potential profile Q(x) inside the ferrimagnet.

Application of the boundary condition (8) on the perfect

conductors and the film–dielectric interfaces gives

~le-fld– ~2e&?= O (39)

D1&-D2e-~’=o (40)

- @’ls = /l(Ale-p’ – A2ep’) (41)

– @’1-, =/3( D1ep’– D2e-Bs) (42)

while application of condition (9) at the interfaces gives

Ale-p’+ A2ePS= 0(s) (43)

Dleps + D2e -@= Q(-~). (44)

Proceeding as before, the Lagrangian giving rise to (38)

is

L= (@ ’)2+@2@2 (45)

and the functional with natural boundary conditions given

by the (39)–(42) is

w=pO~S [(0’)2+PBZ0’] dx
—s

+pop[tanh(ptl)@ 2(s)+ tanh(P~z)@2(- ~)]. (46)

This functional is also a special case of (31). By expanding

the potential as in (32), we obtain

w = Aijcicj (47)

with

+Pof(Afi+PP2;j)dx. (48)
—s

Using the same arguments as in Section 111, the wavenum-
bers of the modes propagating at a given frequency are

found from the zeros of the equation

det(Aij)=O. (49)

The dispersion relation of each mode, ~ = P( w ), as well as

its delay, are found as in the BVW case.
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V. GENERAL PROPERTIES

In contrast to surface waves, it is well known that

magnetostatic volume waves in inhomogeneous films are

reciprocal [4], [5]. The effects of inhomogeneities on the

reciprocity of volume waves have been examined by

Morgenthaler [6], [7] and Stancil [2]. In agreement with the

general conditions for reciprocity discussed in [2], we point

out that both backward and forward volume waves are

reciprocal in our geometry. This property can be seen by

noting that the matrix elements aLJ and Ail are even

functions of the wavenumber ~.

For surface MSW’S, it has been shown that the quantity

fls is invariant under scale transformations provided the

magnetization profile is scaled appropriately [1]. In Ap-

pendix B, we show that volume MSWS also preserve the

quantity /?s under the same conditions. Specifically, if we

consider the point transformation

g=~x

and two film geometries such that

M,(x) =M.(x)

with all the length quantities related by

/3(@) =Ep(@)

and

T(a) =6F(@)

(50)

(51)

(50), then

(52)

(53)

where B and f are the wavenumber and the delay, respec-

tively, of an expanded ( Icl > 1) or contracted ( Icl <1) film

geometry.

For the special case of isolated homogeneous films, it

can be shown [4], [5] that volume MSWS propagate in the

frequency range

UL = – ypoHz (55)

and

tiH= – ypo[H1(Hz + M,)]l’2. ‘(56)

For each frequency in the above band, there are count-

ably infinite ~ modes. All of the modes have the same

lower and upp~r frequency cutoffs. Furthermore, for BVW

and

while for FVW

and

(57a)

(57b)

(58a)

(58b)

The presence of the ground planes changes the disper-

sion of a homogeneous film [8]–[12] but does not change

the above frequency band edges if tl + t2-+co [13].

With the exception of the lower frequency limit of

BVW’S, the frequency limits given by (55) and (56) are not

fixed if the magnetization profile is nonuniform. Instead,

they vary with the magnetization throughout the film thick-

ness. (The low-frequency limit in. the BVW geometry re-

mains fixed, however, since the absence of a demagnetizing

field makes the internal field independent of M,.)

Previous work on geometries with several homogeneous

ferromagnetic layers [12], [14] has shown that modes exist

that are associated with the magnetization of each layer.

Consequently, these modes propagate in different frequency

bands according to (54)–(56). These properties are natu-

rally extended to the more general case of an arbitrary

thickness variation of the magnetization if, for each par-

ticular configuration and M,(x) profile, we define the

frequencies

u~m= = maxti~(x), XG[– S,S] (59)

and

aH~n = minu~(x), Xc[–s, s]. (60)

For every magnetization profile we have considered, we

have found a class of modes whose ~ -+ O cutoff frequen-

cies are given by (59) for FVW’S and (60) for BVW’S. In

this paper, we present the delay of the lowest ~ mode with

these band edges. The higher order modes with the same

frequency cutoffs are not shown due to their long delay.

Modes that exist for frequencies outside this frequency

passband will be the topic of a future paper.

VI. NUMERICAL EXAMPLES

A computer program has been written to calculate the

matrices (34) and (48) and their determinants. The disper-

sion relation, the potential, and the delay characteristics of

the waves are obtained as described in Section III. Legendre

polynomials defined in the interval [ –s,s] have been

chosen for the basis functions ~o, ~1,. -., in our analysis.

These functions are convenient because of their ortho,

gonality in the interval [ –s,s] and the fast convergence

they provide in the case of a homogeneous magnetization

film.

As an example of the rapid” convergence obtained with

-Legendre functions, consider an isolated film (tl, t2+ co)

of thickness 30 pm and magnetization M, = 140.06 kA/m

(47rM~ = 1760 G). In this case, the exact solution can be
found analytically. For FVW’S with a bias field Ho= 237.8

kA/m (3000 Oe), the passband extends from 3.472 to

5.400 GHz (cf. eq. (54)). The .wavenumber, calculated by

our method using only one term in (32), had a relative

‘rror (l&act – I%3#&xaCt) ‘f 0-291 percent at 3-50 ‘Hz.

By using three terms, the error was reduced to 0.093

percent. At 4.50 GHz, and using three terms, the error was
0.010 percent, while with five terms it was reduced to 0.001

percent. For BVW’S with a bias field Ho= 47.7 kA/m (600
Oe), the passband extends from 1.680 to 3.332 GHz. The
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Fig. 2. FVW propagation. (a) The potentials of’ two linear profiles

(,4, B) at ~ = 5.20 GHz. (b) The delay characteristics and additional

potential profiles. The vertical dashed line indicates the frequency used
for the potential profiles in part (a).

wavenumber, calculated using three terms in (32), was

found with an error of 0.00214 percent at 3.30 GHz. By

using five terms, the error was reduced to 0.000047 percent.

Two linear magnetization profiles, A and B, and their

FVW potentials at 5.20 GHz, are shown in Fig. 2(a). Both

of them have the same low M, value of 95.49 kA/m

(47ri14, = 1200 G). Their average magnetization values are

136.40 kA/m (4mikf, = 1714 G) and 119.37 kA/m (47rM,

= 1500 G) for A and B, respectively. The gyromagnetic

ratio (y/2 m = 28 GHz/T), layer thickness (2,s = 30 pm),

ground plane distances (q ~ co, t2= 635 pm), and the bias

field (HO = 238,7 kA/tn (3000 Oe)) are the same for both

films. The FVW passband for a film of M,= 95.49 kA/m

with the above gyromagnetic ratio and bias field extends

from ~~ = 5.040 GHz to ~~ = 6.507 GHz. Fig. 2(b) shows

the delays of the above films, together with the potential

functions of profile B at the frequencies 5.7 GHz and 5.98

GHz. From the delay curves, it is apparent that both films

have the same low-frequency cutoff at ~ = 5.040 GHz,

which corresponds to that of a uniform film of M,= 95.49

kA/m, If the film were homogeneous, the potential profile
of the lowest mode would be an even function of x. For the

case of the linearly inhomogeneous film, we see that the

potential of the lowest mode in our terminology is neither

even nor odd. Instead, it is shifted towards the low-magne-

tization side of the film. Film A has a higher ~ than does

B for the same frequency; this results in a stronger locali-

‘m~~.1 “=’4”8’’’WAI

-I L
-5-3-1135

x/s

(a)

70, 1
I ,! I

{: :,,*: ~

In
c
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1093

(b)

Fig. 3. BVW propagation. (a) The potentials of two linear profiles

(A, B) at ~= 2.85 GHz. (b) The delay characteristics and additional

potential profiles. The vertical dashed line indicates the frequency used
for the potential profiles in part (a).

.

zation of its potential at a given frequency, as is apparent

from Fig. 2(a). This can be qualitatively explained by

introducing the rkotion of an effective film thickness experi-

enced by the mode that decreases as the slope of the

magnetization increases. In accordance with this. interpre-

tation, the delay of film A is greater than that of film B for

a given frequency because of the smaller effective thickness

of A.

The same two MJ profiles used above are now ccmsid-

ered for BVW propagation. A bias field HO= 47.74 kA/m

(600 Oe) is applied. The BVW passband for the minimum

magnetization in the film (95.49 kA/m) extends from

1.680 GHz to 2.910 GHz. Fig. 3(a) shows the M. profiles

and the corresponding potentials for the lowest modes for

~ = 2.85 GHz. The delays for these modes are shown in

Fig. 3(b). The upper frequency cutoffs are the same for

both films since, as argued earlier, the lowest mode is

associated with the minimum M, in the film, which is the

same (95.49 kA/m) for both A and B.

Two magnetization profiles representative of films that

have been ion implanted below the level that renders the
material paramagnetic [15], [16] are shown in Fig. 4(a).

Both films have the same gyromagnetic ratio (28 GHz/T),

and a bias field of Ho = 238.7 lcA/m (3000 Oe) is applied

normal to the slab. The minimum magnetization of film A

is 84.03 kA/m (47rM, =1056 G) which is 60 percent of the

original magnetization of 140.06 kA/m (47rM5 = 1760 G).
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Fig. 4. FWpiopagation, (a) Thepotentid fortwoion~implanted films

at ~= 5.45 GHz. (b) The delay characteristics and additional potential
profiles. The vertical dashed line indicates the frequency used for the
potentiaf profiles in part (a).

The minimum magnetization of film B is 91.04 kA/m

(4r~, = 1144 G), which is 75 percent of the original M,.

The corresponding FVW low-freqtiency cutoffs are 5.443

and 5.197 GHz for film A and B, respectively. The dif-

ference in the low-frequency cutoffs is illustrated by the

delay curves of Fig. 4(b). FVW potential profiles are also

shown for film A at 5.8 and 6.2 GHz. The association of

the mode with the minimum magnetization value of the

film is clearly shown by these profiles.

The same two ion-implanted profiles used above are now

considered for BVW propagation. An in-plane field HO =

43.77 kA/m (550 Oe) is applied. Fig. 5(a) shows the M,

profiles and the corresponding potentials for ~ = 2.55 GHz.

The upper frequency cutoffs are 2.632 GHz and 2.703 GHz

for films A and B, respectively, This difference in the

upper frequency cutoffs is illustrated by the delay curves of

Fig. 5(b).

Ten terms have been used in the expansion of the

potential for all the linear profile cases presented above.

Fifteen and thirty-five terms have been kept for the ion-

implahted films in the forward and backward volume-wave

case, respectively. For inhomogeneous M,, the exact wave-

nt.tmber is not available. In this case, the convergence of ~

is tested by a modified Cauchy criterion. If & stands for

the wavenumber found by (35) or (49) using n terms in the

expansion (32), then convergence is obtained by requiring

the quantity 1. = 1/3.+ ~– & I/l?. to be sufficiently small.
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Fig. 5. EVW propagation. (a) The potential for two ion-implanted films
at ~ = 2.55 GHz. (b) The delay characteristics and additional potential

tmofiles. The verticaJ dashed line indicates the freciuency used for the. .
potential profiles in part (a).

TABLE I
FORWARD VOLUNtE-WAVE CONVERGENCE DATA

-5
Film (“/10 Frequency

(Fig. -Profile) (No. ;erms) (GHz)

2-A

2-A
2-B

2-B
4-A

4-.4
4-B

4-B

10
10

10
10
15

15
15

15

3.668 ‘5.05
1.102 5.10
1.553 5.05
0.015 6.10
0.199 5.45
1.512 6.20
19. B2 5.25
2.436 5.90

Numerically, this quantity has been found to be

frequency-dependent. Convergence data for the profiles

presented in Figs. 2-5 are summarized in Tables I and II.

It should be mentioned that the modes presented here

have not been considered in previous work on MSW

propagation in ion-implanted films [17], [18]. The /3 ~ O

FVW-mode cutoffs for the modes in these previous studies

are obtained using the value of the unperturbed magnetiza-

tion rather than the minimum magnetization. Thus, the

FVW modes discussed here propagate at higher frequen-

cies and longer delays than the modes associated with the

unperturbed region. These new modes may contribute sig-
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TABLE II

BACKWARO VOLUME-WAVE CONVERGENCE DATA

Film
-5

<“/10 Frequency

(Fig.-Prof1le) (No. ;erms) (cHz)

3-A
3-A

3-B

3-B

5-A

5-A

5-B

5-B

10
10

10

;:
35

35
35

5.021 2.85
652.7 2.90
0.309 2.85
269.1 2.90
0.037 1.90
1.389 2.55
0.007 ,1.90
1.548 2.63

nificantly to an increased insertion loss of ion-implanted

devices. Also in these previous studies, doses beyond the

level that destroys ferrimagnetism and multiple ion implan-

tations were employed to obtain profiles that could be

approximated by uniform layers. With the present varia-

tional formulation, however, arbitrary single or multiple

implantation profiles can be analyzed.

VII. SUMMARY

Magnetization inhomogeneities in ferrite film geometries

have been used to control dispersion, form array reflectors,

and occur naturally at the film–substrate interface. We

have presented a method for analyzing magnetostatic

volume-wave modes in thin films with arbitrary variations

of MS through the thickness. Our discussion has been

limited to the lowest order modes associated with the

minimum magnetization.

APPENDIX A

Equations (14) and (18) can be solved for Al and A2

giving

~ = Q(,s)eBd

1 2cosh ( /3tJ

and

~ = @(s)e-Bd

2 2cosh(/3t1)

(Al)

(A2)

where tl= d T-s. Using (Al) and (A2) in (16), we have

@(s) [eLl(d-s) _e-/3(d-s)]
– pq =/32cosh(Bt1)

=j3tanh(/311)@(s). (A3)

Substituting (A3) into (24) gives

Fl(@)l, =~tanh(/3tl)@2(s). (A4)

Similarly

~,(@) l_, =/3tanh(&JQ2(–~) (A5)

where t2 = t –s.

APPENDIX B

Consider a geometry related to that of Fig. 1 by a change

of scale according to the point transformation

f=~~ (Bl)
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where quantities in the transformed system are indicated

by a tilde. The potential transforms as a scalar

@(i)=@(x) (B2)

while its derivative transforms as

a’(x) = +(x). (B3)

If the magnetization profile is also scaled so that

m,(i) = M,(x)

then

ji(%)=p(x).

The variational problem for BVW

system reads

fi =()

8+=0

where

(B4)

(B5)

in the transformed

(B6)

(B7)

+pO~[tanh(~fl)@ 2( J)+tanh(&2)@2(- J)]. (B8)

Substituting (B2), (B3), and (B5) into (B8), ii can be

rewritten as

+pO~[tanh(&tl)@ 2(s)+ tanh(&t2)@2(- s)] (B9)

or

cfi=pO~s [p(OJ)2+(&)2@] dx

+ pO#~~~h(&tl)@2( s)+tanh(&t2)@2( -s)] (B1O)

which, by comparison with (28), has wavenumber solutions

of the form

p=,p. “’ (Bll)

Similarly, the above can be proved to be a property of the

FVW as well. By taking the derivative of (Bll) with respect

to a the corresponding relation for the delays is found to

be

[1]

[2]

[31

[4]

[5]

T(u)=@(d). (B12)
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