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'

Abstract —A variational method recently used to analyze magnetostatic
surface waves in films with arbitrary magnetization inhomogeneities through
the film thickness is extended and applied to volume-wave modes in similar
structures. Methods for calculating dispersion relations, delay characteris-
tics, and magnetostatic potential functions for both forward and backward
volume waves are discussed. Also, concepts pertaining to homogeneous
films such as mode bandwidth and dimensional scaling effects are extended
to the inhomogeneous case. Detailed consideration is given to a class of
modes whose zero-wavenumber cutoff frequencies are associated with the
minimum magnetization of the film. Calculations for linear and ion-
implanted films are presented as numerical examples. Forward volume
waves show greater sensitivity to the inhomogeneities than do backward
volurie waves for the cases considered.

1. INTRODUCTION

N A PREVIOUS paper [1], we used a variational ap-
Iproach to solve the problem of magnetostatic surface-
wave (MSSW) propagation in ferrite thin films with non-
uniform magnetization through the film thickness. The
geometry considered consisted of an infinite slab placed
between parallel ground planes. In the present paper, we
discuss the propagation of volume magnetostatic waves in
these inhomogeneous films.

In contrast to surface waves, the properties of both
backward volume-wave (BVW) as well as forward volume-
wave (FVW) modes are independent of the direction of
propagation in this geometry despite the magnetization
inhomogeneities [2].

As in the surface-wave case, the problem will be solved
by employing a variational principle approach to the
boundary value problem. The potential in the ferri-
magnetic region is expanded in a complete set of functions,
and the expansion coefficients are found by Ritz’ method.

Linear magnetization profiles are used for illustration of
the method and the effect of the slope of their magnetiza-
tion is presented. Magnetization profiles resulting from
low-level ion implantation of ferrimagnetic films are also
presented, and the effect of the implantation level on the
magnetostatic-wave (MSW) delay is discussed.
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Fig. 1. Ferrite film geometry and coordinate system used,

II. From GEOMETRY AND BAsic EQUATIONS

Let us assume an infinite ferrite slab of thickness 2s
placed between two infinite parallel perfect conductors as
shown in Fig. 1. Consider a coordinate system with its
origin at the middle of the slab with the z-axis parallel to
the slab and the conductors.

Magnetostatic volume waves propagate in film structures
under two different orientations of the bias field. BVW’s
propagate along the z-direction when the ferrimagnet is
saturated with a bias field H = H,?, while FVW’s propa-
gate along the z-direction when the bias field is normal to
the plane of the film, i.e., H= H,%.

With a small-signal time dependence of the form e ',
the permeability tensor of the ferrimagnetic material takes
the form

g —ik O
R=polic p O (1)
0 0 1

for BVW (bias H = H,?), and the form

1 0 0
E=po|0 p —ik (2)
0 ik n
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for FVW (bias H = H,%), where
_Y :U'OH(H + M,)— o’

VRGH! — o ©
K=;w_o£w_ (4)
v} Hz—w

v is the gyromagnetic ratio (negative), i, is the permeabil-
ity of free space, M, (x) is the saturation magnetization of
the film as a function of position, and H, is the internal
magnetic field in the ferrimagnetic film.

Consistent with the magnetostatic approximation, we
assume that there exists a potential function ¢ such that

h=-vy (5)

and
b=p-h. (6)
The equation that determines the potential ¢ is Maxwell’s
equation requiring the divergence of the b field to vanish
v-(&-vi)=0. (7)
The boundary conditions to be satisfied are
b-% continuous (8)

and

)
Equation (7) reduces to Laplace’s equation in the dielectric
regions where M, vanishes. The general solutions of (7)
that represent waves traveling along the z-direction are of
the form

Y continuous.

Y= (41 P+ A, ef*)ehs (10a)
n=®(x)e? (10b)
Y= (D1 P+ DyeP~) et (10c)

Substitution of (10) into (5) gives the followmg expression
for the small-signal field 4:

hy=[B(Ae P — A,eP*)2

—iB( A P* + A,eP%) 2] e®: (11a)
hy=—[®(x)% +iB®(x)z] e (11b)
By = [,B(Dle_ﬁx— D,ef¥)z

—iB(D,e P + DyeP*)z]e. (11c)

IIL.

Since the bias field is in-plane for BVW’s, the internal
field H, is equal to the applied field H,. Using the expres-

sion (1) for the permeability tensor, (6) yields for the b
field.

VARIATIONAL FORMULATION FOR BVW

b= tohy (12a)
by= —,uo[/.L(I)x+m(I) +i/3<I)2]e’Bz (12v)
bm .U'ohm- (120)

Requiring the divergence of (12b) to vanish (cf. eq. (7))
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gives the equation
‘u_q)//_+_ ”/(I)/ _ ,82(1) =0
for the potential profile ®(x) inside the ferrimagnet.
Application of the boundary condition (8) on the con-
ductors and on the ferrimagnet—dielectric interfaces gives

(13)

Aje P~ 4,eP=0 (14)
Def —De P =0 (15)
—p®’|,=B( A7 — 4,eP) (16)
—p®|_, =B(Def —De®)  (17)

while the application of condition (9) at the interfaces gives

A R+ A,eP =B (s) (18)

DieP + Dye P =0(—5). (19)

Equation (13) cannot be solved analytically in closed

form for the general case where p is a function of x. For a

numerical solution, we will formufate the boundary value

problem as an equivalent variational one, noting that (13)

can be obtained as the Euler-Lagrange derivative of the
Lagrangian

L=p(®)+p02

We therefore consider the functional

W= ,U,Of [u(®)+,l?2<1)2]dx

(20)

+poF(®)] +uoF(2) ], (21)

where F;(®) and F,(®) are functions to be chosen so as to
satisfy the boundary conditions at x = + 5. The variational
problem

Sw=0 (22)
gives
—2[ (p®” + W — B20)8® dx
+2u® +—18q> F26® =0. (23)
# F) FT el N

The integral in (23) vanishes for all the solutions of (13).
The functions F; and F, have now to be determined so
that the remaining part of (23) vanishes due to the boundary
conditions (14)—(19). That is, F; and F, must satisfy

(2,u(I>’ ?92 ) =0 (24)
and
( 2 ®,+Z_§>) _-o. (25)
In Appendix A, we show that
Fy(®@)|, =B tanh(B1,)@*(s) (26)
F(®)|_, =B tanh(B1,)®*(~ ) 27)

where t;=d —5s and t,=1r—s. The functional w of the
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variational problem can thus be written
$

w= P‘o_/ [p.(‘I)’)2+,32<I>2] dx
-

+p.OB[tanh(ﬁtl)Qz(s)+tanh(Bt2)<I>2(.—s)]. (28)

We recognize (24) and (25) as the natural boundary
conditions of the variational problem which, according to
(16) and (17), simply require the continuity of b-% at the
film-dielectric interfaces. (In making this identification,
(18) and (19) for the continuity of the potential and (14)
and (15) manifesting the existence of the ground planes at
x=—t and x=4d have also been used.) Further, the
Lagrangian (20) is identical with the magnetic quasi-energy
density b-h*, as can be seen by direct use of (11b) and
(12b). In the same spirit, using’ the appropriate parts of
(11) and (12) to form the product b-4* in the dielectric
regions I and III, integrating with fespect to x and using
the boundary conditions (14)-(19), the expressions

[S“z.z*dx=manh(ﬁtl)q>2(s) (29)

and

/:z-z*dx—_-/;tanh(ﬁzz)y(—s) (30)

can be obtained. The functional (28) can thus be written

w=["Bh*dx. (31)
-t

The physical interpretation of (31) is given in [1].

We now consider the expansion of the potential profile
®(x) in a set of functions { fy(x), f1(x), - - - } complete in
the interval [— s, 5]

@(x) =C fi(x) (32)

where the summation is assumed over the repeated indices.
Substitution of (32) into (28) yields the quadratic form

w=a, C,C; (33)

¥ Attt
with

a,,=poB[tanh(Bt,)f,f| _, +tanh(B1,) 1,1, | ]
tuof (wfify +BYif) dx. (34)

To recapitulate, w is stationary for the correct fields; this
means, according to (33), that w is stationary for the
correct coefficients C,. (It is well known [3] that, as a
quadratic form, w is stationary when the C/’s are the
" components of the eigenvectors of a;; and the values of w
for these C,’s are proportional to the eigenvalues of a,;.)
It can be shown that w vanishes for all correct fields of
the magnetostatic problem [1], [2]. Thus, it is only the zero
eigenvalue of a,, that will give us the desired solutions. The
condition on g,, so that zero is indeed an eigenvalue is

det(a;;)=0. (35)
Solution of (35) for B gives the wavenumbers of the modes

allowed for each frequency. This process is repeated for
different frequencies in order to obtain the dispersion
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relation B = B(w). The delay 7 = 7(w) can be calculated by
taking a numerical derivative of the dispersion relation.
IV. FVW VARIATIONAL FORMULATION

FVW modes are supported by a bias field H= H%, in
which case the internal field H, is given by

H,=H,— M,(x). (36)

According to (6) and (11) and using the expression (2) for
the permeability tensor, the small-signal b field is

(37a)
by =—po|¢'(x)%+kBDP + inBd2] ez  (37b)
(37¢)

Blzﬂoﬁl

,I—’m = P«oi’m-
Substituting (37b) into (7), we obtain the equation
O~ up?®d=0
for the potential profile ®(x) inside the ferrimagnet.

Application of the boundary condition (8) on the perfect
conductors and the film—dielectric interfaces gives

(38)

Ae™B— 4,ePi=0 (39)
D.ef'— D,e P'=0 (40)
—®'|,=p( AP — A, eP) (41)
—@'|_;=B(Dye?* — Dye ) (42)

while application of condition (9) at the interfaces gives
Aie P+ 4,eP=0(s) (43)
D.eP + Dye P =®(—3s). (44)
Proceeding as before, the Lagrangian giving rise to (38)
is '
L=(®)"+pp*0> (45)
and the functional with natural boundary conditions given
by the (39)-(42) is
w=pof [(0)+ng20%] ax
-5

+ poB[tanh (B1;) ®2(s)+tanh (B1,) @*(~s)]. (46)

This functional is also a special case of (31). By expanding
the potential as in (32), we gbtain

w=A4,,CC

ij™i

(47)
with
A, =poB[tanh(B1,) £ f| , +tanh (811 ||

* ”Of_s s(fif/+ uﬁzf;f,) dx. (48)

Using the samé arguments as in Section I1I, the wavenum-
bers of the modes propagating at a given frequency are

found from the zeros of the equation
det(4,;)=0. (49)

The dispersion relation of each mode, 8 = B(w), as well as
its delay, are found as in the BVW case.
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V. GENERAL PROPERTIES

In contrast to surface waves, it is well known that
magnetostatic volume waves in inhomogeneous films are
reciprocal [4], [5]. The effects of inhomogeneities on the
reciprocity of volume waves have been examined by
Morgenthaler [6], [7] and Stancil [2]. In agreement with the
general conditions for reciprocity discussed in [2], we point
out that both backward and forward volume waves are
reciprocal in our geometry. This property can be seen by
noting that the matrix elements @,, and A, are even
functions of the wavenumber S.

For surface MSW’s, it has been shown that the quantity
Bs is invariant under scale transformations provided the
magnetization profile is scaled appropriately [1]. In Ap-
pendix B, we show that volume MSW’s also preserve the
quantity 85 under the same conditions. Specifically, if we
consider the point transformation

f=ex (50)
and two film geometries such that
M (%)= M,(x)
with all the length quantities related by (50), then
B(w) =eB(w)

(51)

(52)

and

(w)=€F(w) (53)

where B and # are the wavenumber and the delay, respec-
tively, of an expanded (|e| >1) or contracted (|¢] <1) film
geometry.

For the special case of isolated homogeneous films, it
can be shown [4], [5]} that volume MSW’s propagate in the
frequency range ‘

W < W< Wy (54)
where
@, == YoH, (55)
and
Wi =—Ypo| H,(H,+ M,)]">. (56)

For each frequency in the above band, there are count-
ably infinite 8 modes. All of the modes have the same
lower and upper frequency cutoffs. Furthermore, for BVW

Jim () =y (572)
and

Bli_{nw w(B)=w, (57b)
while for FVW 4

ﬁl_if%+ w(B)=w, (58a)
and -

Bli_r)ngQ w(B)=wy. (58b)
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The presence of the ground planes changes the disper-
sion of a homogeneous film [8]-[12] but does not change
the above frequency band edges if ¢, + ¢, — oo [13].

With the exception of the lower frequency limit of
BVW’s, the frequency limits given by (55) and (56) are not
fixed if the magnetization profile is nonuniform. Instead,
they vary with the magnetization throughout the film thick-
ness. (The low-frequency limit in_the BVW geometry re-
mains fixed, however, since the absence of a demagnetizing
field makes the internal field independent of M,.)

Previous work on geometries with several homogeneous
ferrimagnetic layers [12], [14] has shown that modes exist
that are associated with the magnetization of each layer.
Consequently, these modes propagate in different frequency
bands according to (54)-(56). These properties are natu-
rally extended to the more general case of an arbitrary
thickness variation of the magnetization if, for each par-
ticular configuration and M,(x) profile, we define the
frequencies

@f max = Max w; (x), xe[-s,s] (59)

and

@ min = Minw,(x), xe[-s,s]. (60)

For every magnetization profile we have considered, we
have found a class of modes whose 8 — 0 cutoff frequen-
cies are given by (59) for FVW’s and (60) for BVW’s. In
this paper, we present the delay of the lowest 8 mode with
these band edges. The higher order modes with the same
frequency cutoffs are not shown due to their long delay.
Modes that exist for frequencies outside this frequency
passband will be the topic of a future paper.

VI. NUMERICAL EXAMPLES

A computer program has been written to calculate the
matrices (34) and (48) and their determinants. The disper-
sion relation, the potential, and the delay characteristics of
the waves are obtained as described in Section III. Legendre
polynomials defined in the interval [—s,s] have been
chosen for the basis functions f;, f;,---, in our analysis.
These functions are convenient because of their ortho-
gonality in the interval [—s,s] and the fast convergence
they provide in the case of a homogeneous magnetization
film.

As an example of the rapid convergence obtained with

‘Legendre functions, consider an isolated film (z, 1, — o)

of thickness 30 pm and magnetization M, =140.06 kA /m
(47M_ =1760 G). In this case, the exact solution can be
found analytically. For FVW’s with a bias field H, = 237.8
kA/m (3000 Oe), the passband extends from 3.472 to
5.400 GHz (cf. eq. (54)). The wavenumber, calculated by
our method using only one term in (32), had a relative
error (|Becact — Bvarl/Bexact) Of 0.291 percent at 3.50 GHz.
By using three terms, the error was reduced to 0.093
percent. At 4.50 GHz, and using three terms, the error was
0.010 percent, while with five terms it was reduced to 0.001
percent. For BVW’s with a bias field H, = 47.7 kA /m (600
Oe), the passband extends from 1.680 to 3.332 GHz. The
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Fig. 2. FVW propagation. {(a) The potentials of two linear profiles

" (A, B) at f=520 GHz. (b) The delay characteristics and additional
potential profiles. The vertical dashed line indicates the frequency used
for the potential profiles in part (a).

wavenumber, calculated using three terms in (32), was
found with an error of 0.00214 percent at 3.30 GHz. By
using five terms, the error was reduced to 0.000047 percent.

Two linear magnetization profiles, 4 and B, and their
FVW potentials at 5.20 GHz, are shown in Fig. 2(a). Both
of them have the same low M, value of 9549 kA /m
(47M_ =1200 G). Their average magnetization values are
136.40 kA/m (47M,=1714 G) and 119.37 kKA/m (47M,
=1500 G) for A and B, respectively. The gyromagnetic
ratio (y/2# = 28 GHz/T), layer thickness (25 =30 pm),
ground plane distances (¢, — o, f,= 635 pm), and the bias
field (H, = 238.7 kA/m (3000 Oe)) are the same for both

films. The FVW passband for a film of M, =95.49 kA /m -

with the above gyromagnetic ratio and bias field extends
from f, =5.040 GHz to f; = 6.507 GHz. Fig. 2(b) shows
the delays of the above films, together with the potential
functions of profile B at the frequencies 5.7 GHz and 5.98
GHz. From the delay curves, it is apparent that both films
have the same low-frequency cutoff dt f=5.040 GHz,
which correésponds to that of a uniform film of M, = 95.49
kA /m. If the film were homogeneous, the potential profile
of the lowest mode would be an even function of x. For the
case of the linearly inhomogeneous film, we see that the
potential of the lowest mode in our terminology is neither
even nor odd. Instead, it is shifted towards the low-magne-

tization side of the film. Film A has a higher 8 than does

B for the same frequency; this results in a stronger locali-
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Fig. 3. BVW propagation. (a) The potentials of two linear profiles
(A4, B) at f =285 GHz. (b) The delay characteristics and additional
potential profiles. The vertical dashed linie indicates the frequency used
for the potential profiles in part (a). .

zation of its potential at a given frequency, as is apparent
from Fig. 2(a). This can be qualitatively explained by
introducing the notion of an éffective film thickness experi-
enced by the mode that decreases as the slope of the
magnetization increases. In accordance with this interpre-
tation, the delay of film A is greater than that of film B for
a given frequency because of the smaller éffective thickness
of 4. ‘

The same two M, profiles used above are now consid-
ered for BVW propagation. A bias field H, = 47.74 kA/m
(600 Oe) is applied. The BVW passband for the minimum
magnetization in the film (95.49 kA/m) extends from
1.680 GHz to 2.910 GHz. Fig. 3(a) shows the M, profiles
and the corresponding potentials for the lowest modes for
f =2.85 GHz. The delays for these modes are shown in
Fig. 3(b). The upper frequency cutoffs are the same for
both films since, as argued earlier, the lowest mode is
associated with the minimum M, in the film, which is the
same (95.49 kA /m) for both 4 and B.

Two magnetization profiles representative of films that
have been ion implanted below the level that renders the
material paramagnetic [15]; [16] are shown in Fig. 4(a).
Both films have the same gyromagnetic ratio (28 GHz/T),
and a bias field of H, = 238.7 kA/m (3000 Oe) is applied
normal to the slab. The minimum magnetization of film A
is 84.03 kA /m (47M, =1056 G) which is 60 percent of the
original magnetization of 140.06 kA /m (47M, =1760 G).



1094

N

. - 189
f= 545 G R
8= 47.8 radimm

Ag=230.3 rad/mm

=
(-]
M, (kA/m)

Normalized v
-
P
-
w

-5 -3 -1 1 3 5
x/s
(a)

[=

750

25=12um

650 | §_238.7 R kA/m

t,—o

550 { -
t,=635:um

450(
350 |

250 |

Delay in nsec/mm

150

50 P A -

51 54 57 6 63 66 6.9
Frequency in GHz
®)
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profiles. The vértical dashed line indicates the frequency used for the
potential profiles in part (a).

The minimum magnetization of film B is 91.04 kA/m
(4mM,=1144 G), which is 75 percent of the original M,.
The corresponding FVW low-frequency cutoffs are 5.443
and 5.197 GHz for film A and B, respectively. The dif-
ference in the low-frequency cuitoffs is illustrated by the
delay curves of Fig. 4(b). FVW potential profiles are also

“ shown for film 4 at 5.8 and 6.2 GHz. The association of
the mode with the minimum magnetization value of the
film is cléarly shown by these profiles.

The same two ion-implanted profiles used above are now
considered for BVW propagation. An in-plane field H, =
43.77 kA/m (550 Oe¢) is applied. Fig. 5(a) shows the M
profiles and the corresponding potentials for f = 2.55 GHz.
The uppér frequency cutoffs are 2.632 GHz and 2.703 GHz
for films 4 and B, respectively. This difference in the

-upper frequency cutoffs is illustrated by the delay curves of
Fig. 5(b). , : ,

Ten terms have been used in the expansion of the
potential for all the linear profile cases presented above.
Fifteen and thirty-five terms have been kept for the ion-
implanted films in the forward and backward volume-wave
case, respectively. Forinhombge’neous M, the exact wave-
number is not available. In this case, the convergence of 8
is tested by a modified Cauchy criterion. If 8, stands for
the wavenumber found by (35) or (49) using » terms in the
expansion (32), then convergence is obtained by requiring
the quantity §,=|8,.1~ B,l/8, to be sufficiently small.
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Fig. 5. BVW propagation. (a) The potential for two ion-implanted films
at f=2.55 GHz. (b) The delay characteristics and additional potential
profiles. The vertical dashed line indicates the frequency used for the
potential profiles in part (a).

TABLE
FORWARD VOLUME-WAVE CONVERGENCE DATA

;-5
tg/10 Frequency

Film . n
(Fig.-Profile) (No. terms) (GHz)

2-a 10 3.668 "5.05
2-A 10 1.102 5.10
2-B 10 1.553 5.05
2-B 10 0.015 6.10
4=A 15 0.199 5.45
4-4 15 1.512 6.20
4-B 15 19.82 5.25
4-B 15 2.436 5.90

Numerically, this quantity has been found to be
frequency-dependent. Convergence data for the profiles
presented in Figs. 2-5 are summarized in Tables I and II.
It should be mentioned that the modes presented here
have net been considered in previous work on MSW
propagation in ion-implanted films [17], [18]. The 8 — 0
FVW-mode cutoffs for the modes in these previous studies
are obtained using the value of the unperturbed magnetiza-
tion rather than the minimum magnetization. Thus, the
FVW modes discussed here propagate at higher frequen-
cies and longer deélays than the modes associated with the
unperturbed region. These new modes may contribute sig-
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TABLEII
BACKWARD VOLUME-WAVE CONVERGENCE DATA

Film n ¢n/10 5 Frequency
(Fig.~Profile) (No. terms) (GHz)
3-A 10 5.021 2.85
3-a 10 652.7 2.90
3-B 10 0.309 2.85
3-B 10 269.1 2.90
5-4 35 0.037 1.90
5-A 35 1.389 2.55
5-B 35 0.007 1.90
5-8 35 1.548 2.63

nificantly to an increased insertion loss of ion-implanted
devices. Also in these previous studies, doses beyond the
level that destroys ferrimagnetism and multiple ion implan-
tations were employed to obtain profiles that could be
approximated by uniform layers. With the present varia-
tional formulation, however, arbitrary single or multiple
implantation profiles can be analyzed.

VIL

Magnetization inhomogeneities in ferrite film geometries
have been used to control dispersion, form array reflectors,
and occur naturally at the film-substrate interface. We
have presented a method for analyzing magnetostatic
volume-wave modes in thin films with arbitrary variations
of M, through the thickness. Our discussion has been
limited to the lowest order modes associated with the
minimum magnetization,

SUMMARY

. APPENDIX A
Equations (14) and (18) can be solved for 4, and 4,
giving
®(s)eh?

A S0 (1) “

and
_ 9(s)e ™
2 2cosh(B1,)
where 1, = d — 5. Using (A1) and (A2) in (16), we have

(A2)

4 — Q(S) —8) __ 5 -5
—ud {s _"32cosh(,8t1) [ePld=s) — g=B(d ]
= B tanh(B1,)®(s). (A3)
Substituting (A3) into (24) gives
Fi(®)|, =B tanh (B8,)®*(s). (A4)
Similarly
F,(®)|_,=ptanh(Bt,)®*(—s) (AS5)

where 1, =1 —s.

APPENDIX B

Consider a geometry related to that of Fig. 1 by a change l

of scale according to the point transformation
X=ex (B1)
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where quantities in the transformed system are indicated
by a tilde. The potential transforms as a scalar

o(%)=0(x) (B2)
while its derivative transforms as
b/(%) = 20 (x). (B3)
If the magnetization profile is also scaled so that
M(3)=M,(x) (B4)
then
(%) =p(x). (B5)

The variational problem for BVW in the transformed
system reads

(B6)
(B7)

=
If
[== T ]

(=]
k9]
I

where
w=pof [n(8)+p*6%] s

+ poB [tanh (B7,) §7(3) +tanh ( BF,) ®2(~ 5)]. (B8)
Substituting (B2), (B3), and (B5) into (B8), w can be
rewritten as

s 52,2
W =.Ltof_ [;%(‘I)’)z-‘r E(—;—qﬂ]edx

+ Mo% [tanh ( Bez,) @(s)+tanh( Ber,)®>(—s)] (BY)
or
ew = yofjs[p(Q’)2+ (l?e)z(bzl dx

+ poBe[tanh ( Ber,) ®%(s)+tanh ( ez, ) B2(~ s)| (B10)

which, by comparison with (28), has wavenumber solutions
of the form

B=¢B. (B11)
Similarly, the above can be proved to be a property of the
FVW as well. By taking the derivative of (B11) with respect

to w the corresponding relation for the delays is found to
be

T(w)=eF(w).
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